
The tallymer software for counting, indexing, and
searching k-mers

a manual

Stefan Kurtz
Center for Bioinformatics,

University of Hamburg

August 6, 2012

This manual describes the Tallymer-software, a collection of programs for counting, indexing, and
searching k-mers. For an introduction of the notions, concepts, and methods underlying the software,
we refer the reader to [1]. Tallymer is part of the genometools software (http://genometools.
org). It is implemented as part of the gt-binary and called as a subprogram. So to run tallymer,
one has to call the gt-binary with subprogram tallymer. tallymer itself has three subprograms
mkindex, occratio, and search. These are described below.

1 mkindex

The program mkindex is used for counting and indexing k-mers for a fixed value of k. It is called as
follows:

gt tallymer mkindex [options] -esa suffixerator-index [options]

The suffixerator-index is an enhanced suffix array computed by the program suffixerator, which
is also part of the genometools-package. Currently, there is no suffixerator-manual available, but
in Section 4 we show how to call suffixerator appropriately in the context of tallymer. The
following options are available in mkindex:

-esa suffixerator-index
Specify the name of an suffixerator-index computed by the suffixerator-program using the
output options -suf, -lcp, and -tis. This option is mandatory.

-mersize k
Specify the size k of the mers. That is, the program generates all substrings of length k of the
given input sequences, given as a suffixerator-index If this option is missing, then the default
value for k is 20.

-minocc c
Specify the minimum occurrence number for which to output the k-mer sequences. That is, a
k-mer is output, if it occurs at least c times in the union of all sequences from the suffixerator-
index. When combined with option -indexname, this option specifies an occurrence constraint
on the k-mers stored in the generated tallymer-index. That is, a k-mer is put into the tallymer-
index, if it occurs at least c times in the union of all sequences from the suffixerator-index.

1

-maxocc c
Specify the maximum occurrence number for which to output the k-mer sequences. That is, a
k-mer is output, if it occurs at most c times in the union of all sequences from the suffixerator-
index. When combined with option -indexname, this option specifies an occurrence constraint
on the k-mers stored in the generated tallymer-index. That is, a k-mer is put into the tallymer-
index, if it occurs at most c times in the union of all sequences from the suffixerator-index.

-pl [prefixlength]
Specify the prefix length to construct a bucket boundary table for the generated tallymer-index.
This additional table speeds up the search in the tallymer-index. This option only works for
an alphabet of size 4, i.e. for the DNA alphabet. The argument prefixlength is optional. Hence
it is denoted in square brackets. If the argument is omitted, then the value for prefixlength is
automatically determined. More precisely, it is

⌊
log4

n
4

⌋
, where n is the total number of k-mers

in the tallymer-index.

-indexname idxname
Store the k-mers specified according to the options -minocc and -maxocc in the file named
idxname.mer. If option -pl is used, then additionally the bucket boundary table is stored in a
file named idxname.mbd. Using the option -counts (see below), an additional file idxname.mct
is generated. These file together make up the tallymer-index.

-counts

Specify that idxname.mct is generated storing the counts of the k-mers represented by the tally-
mer-index. This option can only be used together with option -indexname which also specifies
prefix of the produced output file. This option is required if the program search needs to report
the k-mer-counts.

-scan

Sequentially read the suffixerator-index. In the default case, the suffixerator-index is mapped
into main memory. This means that suffixerator-index must not be larger than the available
address space. So for a 32-bit machine, the index cannot be larger than 4 GB. When using this
option, the lcp-table and the suf-table of the suffixerator-index are sequentially scanned, so that
only a small part of these tables reside in memory. This, of course, reduces the memory require-
ment of the program. Note that the sequence is still mapped completely into main memory as it
is accessed in random order. This option is higly recommended for large data sizes. If you ever
get an error like

gt tallymer occratio: error: fopen(): cannot open file ’reads.prj’:
No such file or directory

then you should add this option.

-v

Be verbose, that is, give reports about the different steps as well as the resource requirements
of the computation.

-version

Show the version of the program and exit.

-help

display help and exit.

The following conditions must be satisfied:

2

1. Option -pl requires to also use option -indexname.

2. Option -counts requires to also use option -indexname.

3. Option -indexname requires to also use one of the options options -minocc and -maxocc.

Note that the program ignores all k-mers not entirely consisting of wildcard characters (i.e. not a, c,
c, and g in case of the DNA alphabet).

2 occratio

The program occratio is used to compute the occurrence ratios for a set of sequences represented
by a suffixerator-index It is called as follows:

gt tallymer occratio [options] -esa suffixerator-index [options]

The suffixerator-index is an enhanced suffix array computed by the program suffixerator, which
is also part of the genometools-package. Currently, there is no suffixerator-manual available, but
in Section 4 we show how to call suffixerator appropriately in the context of tallymer. The
following options are available in occratio:

-esa suffixerator-index
Specify the name of an suffixerator-index computed by the suffixerator-program using the
output options -suf, -lcp, and -tis. This option is mandatory.

-minmersize kmin

Specify the minimum size of the mers which are counted. That is, the program counts the
number of unique and nonunique mers of length at least kmin. This option is mandatory if
option -mersizes is not used.

-maxmersize kmax

Specify the maximum size of the mers which are counted. That is, the program counts the
number of unique and nonunique mers of length at most kmax. This option is mandatory if
option -mersizes is not used.

-step kstep
Specify the step size according to which the mer counts are output. That is, for all k ∈
[kmin, kmin + kstep, kmin + 2kstep, . . . , kmax] the k-mer counts are output. If this option is not
used, then kstep is 1.

-mersizes k1 k2 . . . kq
Specify mer sizes 1 ≤ k1 < k2 < · · · < kq with q ≥ 1.

-output (unique|nonunique|nonuniquemulti|relative|total)
Specify what to output by giving at least one of the four keywords

unique, nonunique, nonuniquemulti, relative, and total.

The semantics of the used keywords is a follows:

unique: Show the number of unique k-mers for each k between kmin and kmax.

nonunique: Show the number of non-unique k-mers for each k between kmin and kmax. Only
the event that a k-mer is unique is counted.

3

nonuniquemulti: Show the number of non-unique k-mers for each k between kmin and kmax.
Each k-mer is counted as the number of times it occurs in the indexed sequences.

total: Show the number of all k-mers for each k between kmin and kmax. The distribution is
shown twice, once counting each non-unique k-mers as one event, and once counting each
non-unique k-mer as the number of times it occurs in the indexed sequences.

relative: Show the fraction of unique/non-unique k-mers relative to all k-mers. This keyword
can be combined with the keywords unique, nonunique, and nonuniquemulti.

-scan

Sequentially read the suffixerator-index. In the default case, the suffixerator-index is mapped
into main memory. This means that suffixerator-index must not be larger than the available
address space. So for a 32-bit machine, the index cannot be larger than 4 GB. When using this
option, the lcp-table and the suf-table of the suffixerator-index are sequentially scanned, so that
only a small part of these tables reside in memory. This, of course, reduces the memory require-
ment of the program. Note that the sequence is still mapped completely into main memory as it
is accessed in random order. This option is higly recommended for large data sizes. If you ever
get an error like

gt tallymer occratio: error: fopen(): cannot open file ’reads.prj’:
No such file or directory

then you should add this option.

-v

Be verbose, that is, give reports about the different steps as well as the resource requirements
of the computation.

-version

Show the version of the program and exit.

-help

display help and exit.

The following conditions must be satisfied:

1. Any of the options -minmersize, -maxmersize, -step cannot be used together with option
-mersizes.

3 search

The program search is used to search a set of k-mers in a tallymer-index. search is called as
follows:

gt tallymer search [options] -tyr tallymer-index -q queryfile0 queryfile1 . . .

where tallymer-index is an index generated by mkindex, and queryfile0, queryfile1, etc. are query-
files (in FASTA format) which are to be matches against the given index. The following options are
available:

-tyr tallymer-index
Specify the name of a tallymer-index computed by the program mkindex. This option is
mandatory.

4

-q files
Specify a white space separated list of query files (in multiple FASTA format). At least one
query file must be given. The files may be in gzipped format, in which case they have to end
with the suffix .gz.

-strand (f|p|fp)
Specify the strand to be searched. The keyword f means to search on the forward strand, i.e.
each mer is searched in forward direction. The keyword p means to search on the reverse
complemented strand, i.e. the reverse complement of the given mer is searched. The keyword
fp means a combination of f and p.

-output (qseqnum|qpos|counts|sequence
Specify what to output by giving at least one of the four keywords

qseqnum, qpos, counts, sequence.

qseqnum: show the sequence number of the query sequence, the matching mer comes from.

qpos: Show the relative position of the matching mer. The symbol + in front of the position
signifies a match on the forward strand, while the symbol - signifies a match on the reverse
strand.

counts: Show the counts of the mer, i.e. the number of times, the mer occurs in the indexed
sequences.

sequence: Show the sequence content of the mer.

For each matching mer, the mentioned values are output on a single line in the order the four
keywords are specified above. Two consecutive values are separated by white spaces.

-v

Be verbose, that is, give reports about the different steps as well as the resource requirements
of the computation.

-version

Show the version of the program and exit.

-help

display help and exit.

4 Examples

Suppose we have a collection of two files read1.fna and read2.fna. In the first step, we index
both files using the program suffixerator:

$ gt suffixerator -dna -pl -tis -suf -lcp -v -parts 4 -db read1.fna read2.fna -indexname reads
dna=yes
indexname="reads"
prefixlength=automatic
storespecialcodes=false
parts=4
inputfile[0]=read1.fna
inputfile[1]=read2.fna
indexname=reads
outtistab=true,outsuftab=true,outlcptab=true,outbwttab=false,outbcktab=false,outdestab=false
sizeof (Seqpos)=32
specialranges of length 1: 17180

5

specialranges of length 2: 764
specialranges of length 3: 53
specialranges of length 4: 9
specialranges of length 5: 4
init character encoding (uchar,241249 bytes,2.50 bits/symbol)
deliverchar=delivercharViauchartablesSpecialrange
specialcharacters=18923
specialranges=18010
realspecialranges=18010
occurrences(a)=200061
occurrences(c)=155192
occurrences(g)=167557
occurrences(t)=230643
automatically determined prefixlength = 8
sizeof (leftborder)=262148
sizeof (countspecialcodes)=65536
sizeof (distpfxidx)=21868
widthofpart[0]=188406
widthofpart[1]=188330
widthofpart[2]=188355
widthofpart[3]=188362
space peak in megabytes: 1.42
mmap space peak in megabytes: 0.00

We get the suffixerator-index named reads. Note that we have used the option -parts with argu-
ment 4. This means that the suffixerator-index is created such that only 1

4
th of the suf-table and the

lcp-table of the enhanced suffix array resided in main memory during the construction. This consid-
erably reduces the memory requirement. While this was not really necessary for the small files given
in the index, it is necessary to use this option if the sequence size becomes large.

The created suffixerator-index reads is used in the following call to the program occratio:

$ gt tallymer occratio -scan -output unique nonunique -minmersize 10 -maxmersize 20 -esa reads
distribution of unique mers
10 223755
11 373775
12 444083
13 465859
14 468735
15 465646
16 460791
17 455449
18 450049
19 444720
20 439532
distribution of non unique mers (counting each non unique mer only once)
10 135526
11 92162
12 62347
13 49611
14 44618
15 42301
16 40867
17 39769
18 38815
19 37961
20 37166
space peak in megabytes: 0.06
mmap space peak in megabytes: 3.93

This shows the counts of k-mers for k ∈ [10, 20]. The first part of the output reports counts of unique
k-mers, while the second is for non-unique k-mers. For example, there are 223755 unique 10-mers
and 135526 non-unique 10-mers. If we add the keyword relative, then we additionally obtain the
fraction of counts relative to the total number of k-mers:

$ gt tallymer occratio -scan -output unique relative -minmersize 10 -maxmersize 20 -esa reads
distribution of unique mers
10 223755 0.623

6

11 373775 0.802
12 444083 0.877
13 465859 0.904
14 468735 0.913
15 465646 0.917
16 460791 0.919
17 455449 0.920
18 450049 0.921
19 444720 0.921
20 439532 0.922
space peak in megabytes: 0.06
mmap space peak in megabytes: 3.93

For example, we see that 62.3 = 223755
223755+135526

· 100 percent of all 10-mers are unique. To restrict to
specific mer sizes, for example 10, 13, and 17, we can use option -mersizes:

$ gt tallymer occratio -scan -output unique nonunique -mersizes 10 13 17 -esa reads
distribution of unique mers
10 223755
13 465859
17 455449
distribution of non unique mers (counting each non unique mer only once)
10 135526
13 49611
17 39769
space peak in megabytes: 0.06
mmap space peak in megabytes: 3.93

While occratio can compute distributions for a range of k-mers, mkindex runs for a fixed mer-size,
as in the following example:

$ gt tallymer mkindex -scan -mersize 19 -minocc 40 -esa reads
1 444720
2 30886
3 3909
4 1397
5 640
6 335
7 111
8 172
9 39
10 16
11 9
12 82
13 27
14 53
15 27
16 11
17 12
18 17
19 21
20 36
21 27
22 13
23 2
24 5
25 12
26 11
27 6
28 13
29 4
31 1
32 5

7

33 1
34 9
35 10
36 9
37 8
38 4
39 11
40 8
ttcgacaacacccgtcaag
tcggattcgacaacacccg
tcgacaacacccgtcaagt
tcatcggattcgacaacac
cggattcgacaacacccgt
cgacaacacccgtcaagtc
catcggattcgacaacacc
atcggattcgacaacaccc
41 2
gacaacacccgtcaagtcc
acaacacccgtcaagtcca
space peak in megabytes: 0.06
mmap space peak in megabytes: 3.93

The output, as explained at the beginning of the output, shows the distribution of occurrences of 19-
mers in the suffixerator-index reads. The 19-mers occurring more than 40 times are reported with
their string content. We now add options -indexname and -counts to generate a 19-mer tallymer-
index called tyr-reads. The index contains information to show the counts.

$ gt tallymer mkindex -scan -mersize 19 -minocc 4 -indexname tyr-reads -counts -pl -esa reads
construct mer buckets for prefixlength 4
numofcodes = 256
indexfilename = tyr-reads
alphasize = 4
mersize = 19
numofmers = 3166
merbytes = 5
space peak in megabytes: 0.06
mmap space peak in megabytes: 3.93

This generates the 19-mer index file tyr-reads.mer and an additional table with bucket bound-
aries stored in file tyr-reads.mbd.

The program search now uses the index reads and matches all 19-mers of the input sequence
U89959 against it:

$ gt tallymer search -output qseqnum qpos counts sequence -tyr tyr-reads -q U89959.fna
0 +5966 4 tcttcttcttcttcttctt
0 +17269 14 atatatatatatatatata
0 +17270 12 tatatatatatatatatat
0 +17271 14 atatatatatatatatata
0 +17272 12 tatatatatatatatatat
0 +71281 6 tcatcatcatcatcatcat
0 +71282 4 catcatcatcatcatcatc
0 +71283 6 atcatcatcatcatcatca
0 +71284 6 tcatcatcatcatcatcat
0 +71285 4 catcatcatcatcatcatc
0 +71286 6 atcatcatcatcatcatca
0 +71287 6 tcatcatcatcatcatcat
0 +77815 14 atatatatatatatatata
0 +77816 12 tatatatatatatatatat
0 +77817 14 atatatatatatatatata
0 +77818 12 tatatatatatatatatat
0 +77819 14 atatatatatatatatata
0 +77820 12 tatatatatatatatatat
0 +77821 14 atatatatatatatatata

8

0 +77822 12 tatatatatatatatatat
0 +77823 14 atatatatatatatatata
0 +77824 12 tatatatatatatatatat
0 +77825 14 atatatatatatatatata
0 +77826 12 tatatatatatatatatat
0 +77827 14 atatatatatatatatata

Each line of the output not beginning with the symbol # consist of four columns: The first column
shows the ordinal number of the sequence in the query file containing the match. The second number
is the offset in the sequence (counting from 0) whose number is given. The number is prefixed by the
symbol + if the given mer matches on the forward strand. The number is prefixed by the symbol - if
the given mer matches on the reverse complemented strand. The third column shows the occurrence
count for the mer in the index. There are separated counts for the matches on the forward and the
reverse complemented strand. The fourth column shows the mer in forward direction.

References

[1] S. Kurtz, A. Narechania, J.C. Stein, and D. Ware. A new method to compute K-mer frequencies
and its application to annotate large repetitive plant genomes. BMC Genomics, 9:517, 2008.

A Remark to users of previous versions of the programs

In previous versions of the Tallymer software the programs were named differently. The previous pro-
gram vmerstat corresponds to tallymer mkindex, vmersearch corresponds to tallymer
search, and vmerdist corresponds to tallymer occratio. The output format has not
changed in the current version. The options of the current tallymer programs is compatible with
the options of the previous programs. There are only some extra options required:

1. the tallymer mkindex-program requires an extra option -esa to specify the enhanced suffix array.
The latter is constructed by the suffixerator-program which is also part of the genometools (see
examples in Tallymer manual)

2. seperate runs of constructions of enhanced suffix arrays are no longer necessary. Instead use
the option -parts in one call to the suffixerator-program which creates an enhanced suffix array
for the entire sequence set. I have tried this for a set of ESTs (total length 3.2 GB) and it works
well.

3. For very large enhanced suffix arrays (which do not fit into main memory) use the option -scan

for tallymer mkindex and tallymer occratio.

4. For tallymer occratio use the option -esa to specify the enhanced suffix array.

5. For tallymer search use the option -tyr to specify the input tallymer index.

9

