The GenomeTools Developer’s Guide

Sascha Steinbiss, Gordon Gremme and Stefan Kurtz*

February 4, 2013

Contents

(L__Introduction| 1
2 Object-oriented design| 2
[3 Directory structure| 11
4__Public APIS 13
[5 Coding style] 14
{6 Error handling| 19
[/ Memory management| 20
8 Threads| 22
[9 Testing and Debugging| 23
(10 Additional make parameters| 26
(1T Contributing code| 27

1 Introduction

This document describes design properties and coding guidelines for the GenomeTools genome anal-
ysis system. The goal of the GenomeTlools environment is to provide a well understandable, com-
prehensive and most importantly reusable set of classes and modules to aid in the development of
C-based bioinformatics applications.

The expected gain in productivity is only possible to achieve if all components of the GenomeTools
behave in a similar way — or so to say — in a way which is least surprising to the user (which is, in this
case, a programmer). Thus we ask all developers contributing code to the GenomeTools to adhere to
a common set of rules which make it easier for others to reuse the products of everyone’s hard work.

*please send comments to: steinbiss@zbh.uni-hamburg.de

2 Object-oriented design

2.1 Classes

The central component type in GenomeTools is the class. Structuring the C code into classes and
modules gives us a unified design approach which simplifies thinking about design issues and avoids
the code base becoming monolithic, a problem often encountered in C programs.

2.1.1 Simple classes

For most classes, a simple class suffices. A simple class is a class which does not inherit from other
classes and from which no other classes inherit. Using mostly simple classes avoids the problems of
large class hierarchies, namely the interdependence of classes which inherit from one another. The
major advantage of simple classes over simple C structs is information hiding.

2.1.2 Implementing simple classes

We describe now how to implement a simple class using the string class str. [ch] of GenomeTools
as an example. The interface to a class is always given in the .h header file (str.h in our example).
To achieve information hiding the header file cannot contain implementation details of the class. The
implementation can always be found in the corresponding .c file (str.c in our example). Therefore,
we start with the following C construct to define our GtStr class in str.h:

typedef struct GtStr GtStr;

This seldomly used feature of C introduces a new data type named GtStr which is a synonym for
the struct GtStr data type, which needs not to be known at this point. In the scope of the header
file, the new data type GtStr cannot be used, since its size is unknown to the compiler at this point.

Nevertheless, pointers of type GtStr can still be defined, because in C all pointers have the same size,
regardless of their type. Using this fact, we can declare a constructor function:

GtStrx* gt_str_new(void);

which returns a new string object, and a destructor function
void gt_str_delete (GtStrx*);
which destroys a given string object. This gives us the basic structure of the string class header file:

A new data type (which represents the class and its objects), a constructor function, and a destructor
function.

#ifndef STR_H
#define STR_H

typedef struct GtStr GtStr;

GtStrx* gt_str_new(void);
void gt_str_delete (GtStrx*);
#endif

Now we look at the implementation side of the story, which can be found in the str.c file. At first, we
include the str.h header file to make sure that the newly defined data type is known:

#include "str.h"

Then we define struct GtStr which contains the actual data of a string object (the member variables
in object orientation lingo).

struct GtStr {

char *cstr; /* the actual string (always ’\0’ terminated) */
unsigned long length; /* currently used length (without trailing ’\0’) x*/
size_t allocated; /* currently allocated memory x*/

g
Finally, we code the constructor

GtStr* gt_str_new(void)

{
GtStr *s = gt_malloc(sizeof (GtStr)); /* create new string object */
s->cstr = gt_calloc(l, sizeof (char)); /* init the string with ’\0° x/
s->length = 0; /* set the initial length */
s->allocated = 1; /* set the initially

allocated space */

return s; /* return the new string object */

¥

and the destructor

void gt_str_delete(GtStr *s)

{
if (!s) return; /* return without action if ’s’ is NULL x*/
gt_free(s->cstr); /* free the stored the C string */
gt_free(s); /* free the actual string object x/

}

Our string class implementation so far looks like this

#include "core/ma.h"

#include "core/str.h"

struct GtStr {
char *cstr; /* the actual string (always ’\0’ terminated) */
unsigned long length; /* currently used length (without trailing ’\0’) x*/
size_t allocated; /* currently allocated memory x*/

}s

GtStr* gt_str_new(void)

{
GtStr *s = gt_malloc(sizeof (GtStr)); /* create new string object x/
s->cstr = gt_calloc(l, sizeof (char)); /* init the string with ’>\0’ x/
s->length = 0; /* set the initial length */
s->allocated = 1; /* set the initially

allocated space */

return s; /* return the new string object */

}

void gt_str_delete (GtStr *s)

{
if (!s) return; /* return without action if ’s’ is NULL x*/
gt_free(s->cstr); /* free the stored the C string */
gt_free(s); /* free the actual string object */

}

Since this string objects are pretty much useless so far, we define a couple more (object) methods in
the header file str.h and the respective implementations in str.c.

Because C does not allow the traditional object.methodname() syntax often used in object-oriented
programming, we use the convention to pass the object always as the first argument to the function
(methodname (object, ...)).

To make it clear that a function is a method of a particular class classname, we prefix the method
name “dﬂlgt_<c1assname>_.'ThatiS,\Ve get gt_<classname>_methodname (object, ...) as the geneﬂc
form of method names in C. The constructor is always called gt_<classname>_new() and the destructor
gt_<classname>_delete(). See str.c for examples.

2.1.3 Class scaffold code generation

The boilerplate code needed to create the structure of a new class (header and C source) can be
generated automatically to avoid typical copy-and-paste errors. In the scripts/ subdirectory of the
GenomeTools directory tree, there is a helper script to create header files and a C source file with an
implementation scaffold for a given class name. Run scripts/codegen help to get more information
about its usage.

2.2 Interfaces

Interfaces allow several classes with possibly different implementations to share a common set of
methods that can be called independently of the actual implementing class. Each implementing class
must adhere to the interface method signature (that is, the return type and the number and types of
parameters) but is otherwise free to implement the method as liked.

In addition to the common interface functions, a class can also have its own specific functions. To call
an interface function, the object can simply be cast to the interface type, and to call an implementation-
specific function, we cast it to the implementing type. The following section describes the technique
used to implement interfaces in C such that objects can be cast from the interface type to the specific
type without problems.

Let’s imagine we want an interface called GtExample which has a method gt_example_run(GtExamplex).
This corresponds to the following header file example.h (source files are also available in the Genome-
Tools source distribution):

#ifndef EXAMPLE_H
#define EXAMPLE_H

typedef struct GtExample GtExample;

int gt_example_run(GtExamplex);
void gt_example_delete (GtExample*);

#endif

Note that there is no gt_example_new() constructor function, as the constructors will be specific to the
implementing classes. Otherwise, this header is not much different to the header files for a simple
class. To make the methods implementable by more than one class, we need a class object describing
the interface-to-implementation mappings, that is, the specific functions to be called in the imple-
menting class. This class definition is given in a example_rep.h header file, where “rep” stands for
“representation’:

#ifndef EXAMPLE_REP_H
#define EXAMPLE_REP_H

#include <string.h>
#include "core/example.h"

typedef struct GtExampleClass GtExampleClass;

struct GtExampleClass {
size_t size;
int (*xrun) (GtExamplex*);
void (*delete) (GtExamplex);
3

struct GtExample {
const GtExampleClass *c_class;

};

GtExample* gt_example_create(const GtExampleClassx*);

voidx* gt_example_cast (const GtExampleClass*, GtExamplex);
#endif

The GtExampleClass stores a function pointer to the specific function implementing the gt_example_run()
interface method. We also define a delete function which is called when the implementing class needs
to do additional cleanup when an object of it is deleted. Given a GtExampleClass filled with appropriate
function pointers which match the signatures, the gt_example_create() function then creates an object
which can be cast to both the interface type GtExample* as well as the implementing type. To accom-
plish this, the size of the implementing class is needed. The reason behind this will be explained
below.

Note that this header file is meant to be private, that is, it should only be included by code files which
need to know about the interface-to-implementation mappings. It is then straightforward to write the
example.c which both

e returns an object of the interface type, allocating memory to hold both a pointer to a GtExampleClass
object (needed for calling methods in the interface context), and

e implements the interface methods by wrapping the implementation-specific function pointers
given in the GtExampleClass object:

#include "example_rep.h"
#include "core/ma.h"

GtExample* gt_example_create (const GtExampleClass *ec)
{

GtExample *e = gt_calloc(l, ec->size);

e->c_class = ec;

return e;

}

int gt_example_run(GtExample x*e)

{
gt_assert (e && e->c_class && e->c_class->rumn);
return e->c_class->run(e);

}

void gt_example_delete (GtExample x*e)

if ('e) return;
gt_assert(e && e->c_class);

if (e->c_class->delete != NULL) {
e->c_class->delete(e); /* delete implementation-specific
members */
}
gt_free(e); /* delete interface x/

}

Now, let us have a look at how the implementing classes are written. Let’s imagine we want class
GtExampleA to implement the GtExample interface. Of course, we need a class header file example_a.h
containing a constructor and destructor, just as described in section|2.1.2

#ifndef EXAMPLE_A_H
#define EXAMPLE_A_H

typedef struct GtExampleA GtExamplel;
GtExample* gt_example_a_new();

#endif

An implementation of the GtExamplea class in the example_a.c source file then contains the code for the
specific methods and their assignment to the interface mapping. First, we need to include the headers
to be able to register our implementation-specific functions in the mapping struct:

#include "example_a.h"
#include "example_rep.h"

Then, we define our GtExampleA class as usual, but leave enough space for an instance of the interface
class at the beginning of our definition:
struct GtExampleA {

GtExample parent_instance;

unsigned long my_property;
g
By placing an instance of the interface at the beginning of our implementation, we allow the same
pointer (to the beginning of the data structure) to be cast to

1. apointer to a GtExample interface implementation, so it can be used safely with the gt_example_*()
interface methods, restricting access to the interface members only, and

2. a pointer to the GtExampleA data structure, which can safely be used with the gt_example_a_*()
methods, ignoring the interface part and allowing access to the implementation member vari-
ables only.

Figure I]illustrates this concept.
In the rest of example_a.c, we then code our implementation of the run interface method:

static int gt_example_a_run(GtExample *e) /* hidden from outside %/

{

GtExampleA *ea = (GtExampleAx*) e; /* downcast to specific type */
printf ("%1lu", ea->my_property); /* run functionality */
return O;

}

GtExample

e/ea

sizeof ‘GtExample’{ <interface members>

<implementation members>

GtExampleA

Figure 1: Memory layout used in the GtExampleA object starting at the memory location e implementing the
GtExample interface.

Note that we cast our generic GtExample* pointer into a more specific GtExampleA* pointer. We can do
this because we can now be sure that this function has been called on an object of the GtExamplea class.
We can be sure because we have registered this method as an implementation of the run interface
method by assigning it to the function pointer variable in the GtExampleClass structure:

/* map static local method to interface x*/
const GtExampleClass* gt_example_a_class(void)

{
static const GtExampleClass ec = { sizeof (GtExampleld),
gt_example_a_run,
NULL };
return &ec;
}

Note that we assign NULL to the delete function slot, because we do not allocate any memory inside
the implementing class we need to free later. Have a look at the example_b.* files in the GenomeTools
source distribution for an alternative implementation which allocates additional memory.

We can then use the GtExampleClass returned by this function to write the GtExampleA constructor,
which uses gt_example_create() to allocate the needed space, initializes the private members and
returns the object:

GtExample* gt_example_a_new(void)

{
GtExample *e = gt_example_create(gt_example_a_class());
GtExampleA #*ea = (GtExampleAx) e; /* downcast to specific type x*/
ea->my_property = 3; /* access private implementation
member x/
return e;
}

Now consider another implementation, GtExampleB which also implements this interface by creating a
GtExampleClass with different implementation- specific function pointers (see the example_b. files in
the distribution).

Combining these implementation with the interface headers now allows us to do the following:

#include "example.h" /* include the interface header */
#include "example_a.h" /* include the implementation header x*/
#include "example_b.h" /* include another implementation header x*/

int main(int argc, char xargv[])

{

GtExample *my_e = gt_example_a_new(); /* create GtExampleA object, but

with interface type */
gt_example_run(my_e); /* call an interface method */
gt_example_delete(my_e);

GtExample *my_e = gt_example_b_new(); /* create GtExampleB object, but
with interface type */
gt_example_run(my_e); /* call an interface method */

gt_example_delete(my_e);

return O;

}

That is, we can access two implementations via a common set of interface methods.

2.3 Modules

Modules bundle related functions which do not belong to a class. Examples:

® dynalloc.h, the low level module for dynamic allocation, e.g. used to implement arrays in
array.c and the above-mentioned strings

e sig.h, bundles signal related functions (high level)
® xansi.h, contains wrappers for the standard ANSI C library
e xposix.h, contains wrappers for POSIX functions we use

When designing new code, it is not very often the case that one has to introduce new modules. Usually
defining a new class is the better approach.

2.4 Unit tests

Classes and modules should contain a gt_<classname>_unit_test function which performs a unit test
of the class/module and returns O in case of success and -1 in case of failure. More information about
how to write unit tests can be found in section

2.5 Tools

A tool is the most high-level type of component GenomeTools has to offer. Tools are command line
interface (CLI) applications linked into the single gt binary. They make use of helper classes like the
GtOptionParser to make development of command line tools easier. Having a common interface for
option parsing and error reporting ensures a consistent user experience across all GenomeTools tools,
as they behave the same way when invoked from the command line.

There are two possible code paths for defining and implementing a tool; only the newer approach
will be described here. Simply put, a tool is just another object which needs to implement a spe-
cial interface, providing callbacks for the GenomeTools runtime to call at predefined times during
the tool’s invocation. An example for a simple tool can be found in the tools subdirectory in the
gt_template. [ch] files.

First, a tool needs to define a structure to store its arguments. That is, every command line parameter
needs to be represented by a member in the struct to store its value. For example, for a tool taking a
boolean and a string parameter, we would need the following:

typedef struct {
bool bool_option;
GtStr *str_option;

} ExampleToolArguments;

The tool also requires an initializer function which prepares the argument structure for value assign-
ment. For example, the Gtstr in above example must be instantiated:

static void* gt_example_tool_arguments_new(void)

{
ExampleToolArguments *arguments = gt_calloc(l, sizeof *arguments);
arguments ->str_option = gt_str_new();
return arguments;

X

as well as a destructor function which deletes the argument objects, if necessary, and then frees the
memory used for the argument struct:

static void gt_example_tool_arguments_delete(void *tool_arguments)
{

ExampleToolArguments *arguments = tool_arguments;

if (!arguments) return;

gt_str_delete (arguments->str_option);

gt_free (arguments) ;

}

The argument structure is filled by an option parser. An option parser is an object which gets passed
an argument list, identifying parameter names and values and assigning them to the correct variables.
It also handles the creation of a convenient help output by documenting the purpose of each option
and its valid value range. See the interface documentation in src/core/option.h for a list of possible
option types. A tool must contain a function returning an option parser object:

static GtOptionParserx gt_example_tool_option_parser_new(void *tool_arguments)
{

ExampleToolArguments *arguments = tool_arguments;

GtOptionParser *op;

GtOption *option;

gt_assert (arguments);

op = gt_option_parser_new("[optiony...]Jy[filel",
"Thisisyan,example tool for ,demonstration "
"purposes.");

option = gt_option_new_bool("bool",
"thisyisythe boolean option",
&arguments ->bool_option,
false);

gt_option_parser_add_option(op, option);

option = gt_option_new_string("string",
"passyanyystring here",
arguments ->str_option,
NULL) ;

gt_option_parser_add_option(op, option);

return op;

}

The option parser already performs initial validation of the parameters. For example, it makes sure
that a numeric parameter is not given a string value, that unsigned values are always positive or that
probabilities stay between 0 and 1. In an error case, tool invocation is stopped and the appropriate
error message is printed to stderr.

For more sophisticated error checking, for example involving several parameters and their values at
once, is is possible to write an argument checking function, which can set an error message in a
GtError object (see and return a non-zero return value if an error was found:

static int gt_example_tool_arguments_check (GT_UNUSED int rest_argc,

void *tool_arguments,
GT_UNUSED GtError *err)

ExampleToolArguments *arguments = tool_arguments;
int had_err = O0;

gt_error_check(err) ;

gt_assert (arguments);

if (gt_str_length(arguments->str_option) == 0) {
gt_error_set (err, "parameter,’string’ mustynot, be empty!");
had_err = -1;

return had_err;

}

In most cases, however, this function is not necessary and needs not be implemented.
The most important function which must be implemented in a tools is the runner. The runner calls the
code that actually performs the tool’s function and is the equivalent to the main function in a traditional
C program. Its signature is very similar to a typical C main function as well, being passed the number
of arguments argc and an array of argument strings argv.:
static int gt_example_tool_runner (int argc, const char *xargv,

int parsed_args,

void *tool_arguments,
GT_UNUSED GtError *err)

In addition, it receives the number of arguments (parsed_args) which were already parsed by the
option parser, thus specifying an offset in the argument array from which the rest of the arguments
begin. That is, if the parameter string was

-bool true -string foo bar baz

then parsed_args would be 4, as the -bool and -string options and their values have already been
parsed, leaving argv[parsed_args] = ’bar’ and argv[parsed_args+1] = ’baz’ to be handled by the
runner.
The rest of the runner function could look like this:
static int gt_example_tool_runner(int argc, const char **argv,

int parsed_args,

void *tool_arguments,
GT_UNUSED GtError *err)

ExampleToolArguments *arguments = tool_arguments;

10

int had_err = 0;
gt_error_check (err) ;
gt_assert (arguments);

if (arguments->bool_option)
printf ("the_ bool option,was,set\n");
printf ("the,string was,’%s’, gt_str_get (arguments->bool_option));

uyureturn had_err;

}

Finally, the functions described above are registered in the new tool object by using gt_tool_new() to
create a new GtTool instance passing pointers to all the static callback functions.

GtTool* gt_example_tool(void)

{
return gt_tool_new(gt_example_tool_arguments_new,
gt _example_tool_arguments_delete,
gt_example_tool_option_parser_new,
gt_example_tool_arguments_check,
gt_example_tool_runner);
}

Let’s assume that we have saved the implementation above in tools/gt_example_tool.c. We then make
the gt_example_tool() function public by adding a tools/gt_example_tool.c header:

#ifndef GT_EXAMPLE_TOOL_H
#define GT_EXAMPLE_TOOL_H

#include "core/tool.h"

GtTool* gt_example_tool(void);

#endif

This function can then be added to the GenomeTools toolbox by adding the following lines to gtt.c:

#include "tools/gt_example_tool.h"

GtToolbox* gtt_tools(void)
{

gt_toolbox_add_tool (tools, "example", gt_example_tool());

}

After compilation, we can then run our tool by calling

$ gt example -bool true -string foo bar baz

3 Directory structure

All of these directories are given as subdirectories of the root directory of the GenomeTools source
distribution.

11

bin/

doc/

gtdata/

gtpython/

gtruby/

gtscripts/

lib/
obj/
scripts/

src/

This subdirectory contains the GenomeTools binary executable gt as dynamic and static variants
as well as the example executables built from src/examples. This directory is only populated
after a make run. Running make cleanup will remove its contents.

This subdirectory contains documentation such as this developer’s guide, license information,
format specifications, and the user manuals for the software tools included with the Genome-
Tools.

This subdirectory contains data needed for the GenomeTools to run which are not compiled into
the GenomeTools binary itself, such as

texts for the tool on-line help (in gtdata/doc),

Lua code for documentation generation (in gtdata/modules),

ontology definition files (in gtdata/obo_files),

AnnotationSketch default (e.g. a default style file, in gtdata/sketch), and

alphabet definition files for character mappings (in gtdata/trans).

This subdirectory contains the Python bindings to selected parts of the GenomeTools library, as
well as the Python test suite. See the README file in this directory for installation instructions.

This subdirectory contains the Ruby bindings to selected parts of the GenomeTools library. See
the README file in this directory for installation instructions.

This subdirectory contains a number of Lua scripts written using the GenomeTools Lua bind-
ings; most prominently the gtdoc.lua script to generate the documentation. These scripts can
be run using the gt executable, which is a Lua interpreter as well, by giving the script name
instead of a tool name.

This subdirectory contains the GenomeTools static and dynamic libraries when built.
This subdirectory contains object files as they are created during GenomeTools compilation.
This subdirectory contains useful scripts for GenomeTools developers.

This subdirectory contains the main GenomeTools source tree. In particular, there is a number
of subdirectories:

— the src/annotationsketch subdir contains AnnotationSketch code for genome annota-
tion drawing,

— the src/core subdir contains general code, i.e. basic data structures, memory manage-
ment, file access, encoded sequences, sequence parsers, tool runtime, option parser, mul-
tithreading, etc.,

— the src/examples subdir contains simple example applications built on GenomeTools
(streams, or a GUI app),

— the src/extended subdir contain code for annotation handling and parsing, stream pro-
cessing, alignment, chaining, etc.,

— the src/external subdir contains third-party source code which is distributed with the
GenomeTools source and built alongside the GenomeTools,

12

— the src/gth subdir with GenomeThreader code,

— the src/gtlua subdir with Lua bindings for some of the GenomeTools classes and mod-
ules,

— the src/1tr subdir with LTR retrotransposon prediction and annotation code,

— the src/match subdir with code for index structure construction and access, short read
mapping, matching algorithms etc.,

— the src/mgth subdir contains MetaGenomeThreader code,
— the src/patches subdirectory with platform-specific patches, and

— the tools subdir with code for all the tools included with GenomeTools.

testdata/ This subdirectory contains test data used in the testsuite. Please refrain from storing large files
(> IMB) in this directory, but use the gttestdata repo instead (see[9.2.2). Special subdirecto-
ries:

— The testdata/gtscripts subdir contains test scripts used in the Lua test cases,
— the testdata/gtruby subdir contains test scripts used in the Ruby test cases, and

— the testdata/gtpython subdir contains test scripts used in the Python test cases.

testsuite/ This subdirectory contains the test suite definitions as Ruby files as well as the test engine and
temporary data created using test runs. After starting a test suite run, the testsuite/stest_testsuite
subdirectory then contains a directory named test<n> for each test, where <n> is the test number.
See for more details.

www/ This subdirectory contains the content of the GenomeTools website.

4 Public APIs

In GenomeTools, we distinguish between public and non-public application programming interfaces
(APIs). The API describes the classes and modules belonging to the GenomeTools and their methods
and functions, in particular their signatures; that is, their name, return value, and number and types of
their parameters.

The public API is a subset of the GenomeTools library which is intended to be used by developers
which do not belong to the GenomeTools core development team, and is fairly high-level at this point.
To ensure compatibility with future versions of the GenomeTools library, the public API is supposed to
be subject to as little change as possible. That is, interface changes should be made very sparsely, and
interface design should ‘look forward’ to make such changes unneccessary. For example, interface
functions which could fail in theory should receive error handling facilities in their signature (such as
areturn code and a GtError object), even if their current (and maybe only) implementation cannot fail.
This leaves room for implementations that may fail without having to break the API when the new
implementation finds its way into the GenomeTools.

All public API functions for a given class must be declared in a prototype header file named <class>_api.h.
This header file must only include other public API headers. All of the public API header files are
packaged to be distributed with the GenomeTools tarball and are installed into the given include path.
That is, the functions defined in them are later accessible by including genometools.h only.

It is important to note that all functions in the public header files must be properly documented (see

section[5.7).

13

5 Coding style

5.1 General rules

e No line in the source code must be longer than 80 characters. This allows proper formatting of
the code.

e There must be not more than one consecutive empty line in the source code.
e Trailing spaces are disallowed.
e There must not be a comma at the beginning of a line.

e Unless it is at the end of a line, a comma should be followed by a space. Example:

cmpfunc (gt_array_get(a, idx), gt_array_get (b, idx));
instead of
cmpfunc (gt_array_get (a,idx),gt_array_get (b, idx));
e The symbols ‘=’, ‘==" und ‘!=" should be enclosed by spaces. That is, write
i = 0;
instead of
i=0;
e There must be a space between the keywords for, if, sizeof, switch, while and do and the

following parenthesis.

e The opening braces ({) after the keywords if, else, for, do, and while should be on the same
line as the keyword.

e The curly braces following an if or else expression should be omitted if the expression and the
(single) following statement both fit on a single line.

o The keyword else should be placed on a separate line.

e Semantic blocks (statements inside loops, function definitions, etc.) must be indented by exactly
two spaces w.r.t. the enclosing block. This explicitly means no tabs, configure your editor!

Here is an example:

bool
gt_array_equal (const GtArray *a, const GtArray *b, GtCompare cmpfunc)
{

unsigned long idx, size_a, size_b;

int cmp;

gt_assert (gt_array_elem_size(a) == gt_array_elem_size(b));

size_a = gt_array_size(a);

size_b = gt_array_size(b);

if (size_a < size_b)
return false;

if (size_a > size_b)
return false;

14

5.2

5.3

for (idx = 0; idx < size_a; idx++) {
cmp = cmpfunc(gt_array_get(a, idx), gt_array_get(b, idx));
if (cmp != 0)
return false;
}
return true;

}

Use the scripts/src_check and scripts/src_clean scripts regularly to check your source code
for style violations.

Use the scripts/pre-commit git hook to automatically run a src_check before each commit. The
commit will be canceled if errors are found.

To enable the git hook, copy the file scripts/pre-commit into the .git/hooks subdirectory of
your GenomeTlools repository.

Static variables inside functions are not allowed. An exception are class structs, which must be
static.

All functions except those which should be callable publicly should be declared as static. All
non-static functions must be documented in a header file. Think twice before making a function
public. Its interface should be clean enough to be understood by someone who does not know
implementation details!

If a GenomeTools module or class exists for your particular need, use it instead of using more
low-level means (e.g. try to use GtFile and friends for file access instead of fopen()/fclose()/...
directly). Consult the documentation and the header files!

Global variables

Generally, global variables are not allowed.

There are exceptions in very rare cases, in which must be made sure that the content in question
is initialized, synchronized for multithreaded use and properly cleaned up. Do not add global
variables without talking to one of the core developers!

Types

Use unsigned types whereever possible. We need to process large amount of data and we may
need every bit to process it.

Use unsigned long for sequence positions/lengths/offsets/.... The unsigned long type equals
the word size on all common systems (i.e., it is 32-bit wide on 32-bit systems and 64-bit wide
on 64-bit systems) which makes it ideal for most use cases.

Use Gtstr and GtArray instead of manipulating byte arrays directly if possible, especially when
returning strings or item collections from a function.

15

5.4

5.5

Naming rules
Class names must begin with Gt, €.g. GtArray, GtNodeStream.
Class names may use camel caseEl if multiple words are required, e.g. GtNodeStream.

Source and header files for a class must start with the class name in lowercase, without the Gt
prefix. If camel case is used in the class name, use underscores in the respective file name, e.g.
GtNodeStream —> node_stream. [ch].

Variable names and function names must be all lower-case.

Variable names and function names should use underscores to separate words (e.g. use the
function name get_first_five_chars instead of getfirstfivechars).

The names of public (i.e. non-static) functions must be prefixed by the string ‘gt_’ to avoid
namespace clashes when linking the GenomeTools library with third-party code.

Class or module names must follow the ‘gt_" part in the function name.

In method signatures, the object on which the method is called must always be the first argument
of the method. That is, method method in class GtClass must be defined as:

<type> gt_class_method(GtClass*, <params>);

Copyright lines

Every header and C source file must begin with a comment containing author and license infor-
mation:

/ *
Copyright (c) 2007-2010 Gordon Gremme <gremme@zbh.uni-hamburg.de>
Copyright (c) 2007-2008 Center for Bioinformatics, University of Hamburg

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

*/

Each developer with substantial contributions (for example, by implementing new features,
refactoring, or fixing bugs which require large rewrites) should give his/her name and email
address, updating the given year ranges in the process.

The ”Center for Bioinformatics” copyright line is only required for developers employed by it,
because only in this case the University gains any copyright.

Uhttp://en.wikipedia.org/wiki/CamelCase

16

http://en.wikipedia.org/wiki/CamelCase

5.6

5.7

Header files

Use conditional inclusion to avoid including the same header file multiple times. Between the
copyright header and the beginning of the declarations, put the following:

#ifndef FILENAME_H
#define FILENAME_H

and put an

#endif

at the end of the header file. This causes the preprocessor to include the section between the
#ifndef and #endif only once.

The identifier to be #defined must be the filename of the header file in uppercase with all non-
alphanumeric characters replaced by underscores.

Comments and documentation
Comments are written in plain C style (/+ ... */). C++-style comments (// ...) are disallowed.

The public API files (header files ending in *_api.h) are examined for automatic generation of
API documentation. The following annotations are supported:

— Each type (e.g. class) should be directly preceded by a comment describing the purpose
of the class. Example:

/* <GtArray*> objects are generic arrays for elements of a certain
size which grow on demand. */
typedef struct GtArray GtArray;

— Each function (method) should be directly preceded by a comment describing the purpose
of the function, its preconditions, return value, and parameters. Example:

/* Add element <elem> to <array>. The size of <elem> must equal the
given element size when the <array> was created and is determined
automatically with the <sizeof> operator. x/

#define gt_array_add (array, elem) \

gt_array_add_elem(array, &(elem), sizeof (elem))

/* Add element <elem> with size <size_of_elem> to <array>.
<size_of_elem> must equal the given element size when the <array>
was created. Usually, this method is not used directly and the
macro <gt_array_add()> is used instead. */

void gt_array_add_elem(GtArray *array, void *elem,

size_t size_of_elem);

— Code keywords (parameters, class names, references to other functions) can be marked by
putting them between angled brackets (<...>). Also, keywords can be marked as strong
(bold) by putting them between three underscores (___...___) or emphasized (italic) by
using two underscores (__...__).

e The comment line should briefly describe

— what the method does (e.g. “Calculates and returns X...”, “Delivers the next element in
order...”, “Adds element X..."”),

17

5.8

5.9

— what all parameters are supposed to be (ideally given in the context of what the method
does),

— what the return value is,
— potential side-effects, and

— if the function receives or returns a pointer, whether ownership is taken or retained for
the accepted or returned memory (i.e. “takes ownership of parameter X or “X must be
deleted by the caller”).

Do not group multiple functions beneath one comment line, even if they are largely similar and
differ only in minor details. If required, repeat the comment above each function to ensure that
both get an entry in the generated documentation.

Stars (*) are not to be continued on every line of the comment, as many editors like to do by
default. Doing so anyway will lead to interspersed star symbols in the generated output.

Please refrain from using other markup formats such as Doxygen or Javadoc style. It may
look alright in the plain text, but will most certainly come out weird in the generated LaTeX or
HTML documents.

Use the docs target in the GenomeTools Makefile to build the API documentation, which is then
found in www/genometools.org/htdocs subdirectory (libgenometools.html).
Function pointers

Function pointer declarations used in public headers (e.g. to be used as method arguments)
should always be typedef’ed to an identifier prefixed with Gt. An example:

typedef int (*xGtCompareWithData) (const void*, const void#*, void *data);

The function pointer type can then be used in a sort function this way:

void gt_qsort_r(void *a, size_t n, size_t es, void x*xdata,
GtCompareWithData cmp);

instead of:

void gt_qsort_r(void *a, size_t n, size_t es, void x*xdata,
int (*cmp) (const void*, const void*, void *data));

which makes the headers much harder to read.

If callback functions need additional data to work, provide an additional void* pointer to pass
external data to the callback function (as, for example, done with the data parameter in the
function gt_qgsort_r() above). Do not use global variables for that purpose!

#defines

Identifiers introduced by a #define statement should be completely written in upper case letters.
This also holds for the arguments of macros.

Identifiers introduced by public #defines should be prefixed with GT_.

In public headers, #define statements should only set constants. Macros defining code parts
should only be used — very sparingly — locally within a class or module implementation.

18

5.10 Information hiding

In GenomeTools, we try to adhere to object-oriented design guidelines. An integral part of these is
the enforcement of information hiding or encapsulation, that is, making access to an object’s internal
state only possible through accessor functions.

From this, it follows directly that the use of ‘open’ structs, that is, C structures defined in public head-
ers, is strongly discouraged! Structures (and structure member accesses) should only be implemented
within a C file. This applies to both structures used to implement classes as well as structures used as
auxiliary data structures.

A notable exception are structs implementing classes which only act as containers, i.e. in which the
only methods manipulating the members would be setter and getter methods (see core/range_api.h).
However, even those structures should provide accessor, constructor and destructor methods so they
can safely be created, accessed and deleted from scripting language bindings lacking support for
proper C structure access.

6 Error handling

We distinguish between programming errors and run-time errors. Programming errors occur when
the developer uses resources in an inherently erroneous way, e.g. passing a null pointer where a valid
pointer is expected, passing incorrect length values to string comparison functions, or accessing unini-
tialised memory. This often happens because of incomplete documentation, or by running into “corner
cases” which were overlooked. If undetected, they can lead to nasty bugs that are hard to track down.
Other special cases are expected to come up sooner or later. For example, a user may specify a file
name for input or output which is not readable or writable, or which does not exist. Typically, it is not
intended to terminate program execution at that point, but to react in a graceful way (e.g. by creating
a new file, reporting a proper error message, or asking for a different file name). These are run-time
erTors.

6.1 Programming errors

e Use gt_assert () to check invariants in your program, that is, any conditions that you hold to be
true for the following code to work properly. For example, in a function getting a pointer as a
parameter which is to be dereferenced later, you should assert that the pointer is not NULL prior
to dereferencing. Similarly, in a function that is supposed to never return a negative number,
one should use gt_assert () to check this condition directly before the return statement.

o If the expression given to gt_assert() as a parameter evaluates to false (that is, 0, false, or
NULL), the program will abort.

e Assertions can be disabled at compile time by passing the assert=no switch to the make call. If
variables or parameters are only used in an assertion, disabling assertions may trigger this error
message:

error: unused parameter ’x’

or

error: unused variable ’y’

19

6.2

Include core/unused_api.h and prefix the declaration of the offending identifier with GT_UNUSED
to inform the compiler that this variable is intentionally unused.

Run-time errors

Functions that are allowed to fail at run-time must return a negative error code or NULL. The
code for successful execution should be 0 or a pointer different from NULL. Positive return
values may be used as results. Such functions should also receive a GtError object as their last
parameter, in order to store and propagate error messages. If a function may return an error
code or NULL, always check for this and handle the case accordingly.

Use the GtError class (see core/error_api.h) for storing error messages and error status:

char* get_first_five_chars(const char *str, GtError *err)
{
char *ret;
if (strlen(str) < 5) {
gt_error_set (err, "string, ’%s’yisyshorter,than, 5, ,characters", str);
return NULL;
}
ret = gt_calloc(6, sizeof (char));
strncpy (ret, str, 5);
return ret;

Use a variable called had_err which is initialized to 0 and then assigned an error status such that
an error is set when had_err# 0:

int had_err = 0;
const char *prefix;
GtError *err = gt_error_new();

if ((prefix = get_first_five_chars("foo", err))) {

}
else

had_err = -1;
if ('had_err) {

}

-1 should be used to store an error in the had_err variable. It is very idiomatic to write
if (had_err)... Or if ('had_err)....

e Catch run-time errors and create error messages as close to their source as possible.

e The error object should always be the last parameter and should be named err.

7 Memory management

7.1 Allocation/deallocation

e Space allocation is only allowed using the gt_malloc(), gt_calloc(), gt_realloc() functions in

core/ma_api.h. Use gt_free() to deallocate memory. These methods are analog to malloc(3),

20

calloc(3) and realloc(3) from the C standard library, except that they never return NULL upon
failure.

e The gt_ma_get_space_peak(), gt_ma_show_space_peak() and gt_ma_check_space_leak() functions
in core/ma_api.h can be used to evaluate memory usage and check for memory leaks.

7.2 Reference counting

Sometimes it is desired to have an object referenced by more than one other object, avoiding to
gt_free() the object’s memory until the last reference to the object has been dropped. In GenomeTools,
reference counting is used to implement this behaviour. That is, each object keeps the number of
objects still keeping a reference on it in a local member variable. This is done by each referencing
object calling the object’s ref () method to announce that they now keep a reference, thus increasing
the reference count. When the object reference is no longer needed, the usual delete() method is
used. The delete() method checks and decreases the reference count and defers free’ing the object’s
memory until the object is not referenced by any other object any more. This makes reference counting
a simple form of garbage collection.

To add reference counting to a class, perform the following steps:

o Add an unsigned int counter variable called reference_count to the private member variables
of the class; this variable must be initialized to O in the constructor.

e Consider a class GtFoo to which we want to add reference counting capabilities. Then add a
method gt_<classname>_ref (), in this case gt_foo_ref () to the interface of the class:

GtFoo* gt_foo_ref (GtFoo *f)
{
gt_assert (f);
f->reference_count++;
return f;

}

o In the destructor, check the reference count and only free the memory when necessary:

void gt_foo_delete (GtFoo *f)
{
if (!'f) return;
if (f->reference_count) {
f->reference_count --;
return;
}
gt_free(£f);
}

With reference counted classes, always use the ref () method when storing a reference to an object.
That is, instead of writing

void gt_bar_set_foo(GtBar *b, GtFoo *f)
{
b->value = f;

}

use

21

void gt_bar_set_foo(GtBar *b, GtFoo *f)
{

b->value = gt_foo_ref (f);
}

Always remember to call gt_foo_delete() when the reference is no longer needed! For example, in
the assignment above, a good place to do this is the destructor of the GtBar class.

7.3 Library initialization/finalization

Within the GenomeTools code, there are a number of global or static data which must be properly
initialized before using any GenomeTools functionality, and space for which must be properly freed
when done using the GenomeTools. This is usually done by the runtime by calling initializers when a
tool is run using the gt binary.

Now consider that GenomeTools can also be used as a library, called 1ibgenometools. That means, it
is possible to link an external code with the static or shared object file and call functions from there,
without going through the tool runtime. It is now crucial that the necessary initializations have taken
place before using functions, and that the required cleanup is done at the end.

There are two functions in the core/init. [ch] module in GenomeTools used to accomplish this:

e gt_lib_init(), which initializes all static data and should be called before any other Genome-
Tools function, and

® gt_lib_clean(), which frees all static data. It returns O if no memory map, file pointer, or
memory has been leaked and a value other than O otherwise.

It is also possible to make the cleanup happen automatically when the program using the library exits.
This is done by calling gt_lib_reg_atexit_func() which registers an exit handler with the OS which
will call gt_lib_clean() automatically.

8 Threads

The GenomeTools contain functions allowing developers to write their programs in a multi-threaded
way, by wrapping the POSIX threads library 1ibpthread. See core/thread.h for more information.
Any function with this signature:

void* (*GtThreadFunc) (void *data);
can be enabled to be run concurrently by simply calling

void *mythread(void *data)
{

}
gt _multithread (mythread, NULL, err);

Some more useful information:

e For synchronization during parallel execution of multiple threads, GenomeTools provides classes
for mutexes and read-write-locks. See core/thread.h for a description of the interface of the
GtMutex and GtRWLock classes.

22

e If code must be conditionally compiled depending on thread support, use #ifdef and friends
with the GT_THREADS_ENABLED flag, which is set by the compiler via a -D option when threading
support is enabled.

e Threading support is enabled at compile time by passing threads=yes to the make call. If thread-
ing support is not enabled, all gt_multithread() functions will run the thread function sequen-
tially.

o If threading support is enabled, the number of concurrent jobs can be given using the -j pa-
rameter to the gt binary. That is, to have all multithreaded parts in the tool to be run use three
threads at once, call the tool with

$ gt -j 3 <toolname>

9 Testing and Debugging

9.1 Testing on the code level — the unit tests

Unit test check whether classes and their methods behave correctly when used in a correct manner.
The corresponding functions must be defined in the class implementation file (so they get access to
the private member variables of the tested class) and adhere to the following interface:

int (*¥UnitTestFunc) (GtError *err);

They must return O if the test was successful and -1 if the test has failed. The gt_ensure helper macro
makes writing unit tests easier. To use it, #include the file core/ensure.h. Then write your unit test:
int gt_class_unit_test(GtError *err)
{

int had_err = 0;

gt_error_check (err);

gt_ensure (had_err, 1
gt_ensure (had_err, 1

~

+
+

]
]
w N

1
1
return had_err;

}

Similarly to gt_assert (), if the expression given to gt_ensure() as a second parameter evaluates to
false, the test will fail with an error message, giving the location at which the first condition failed.
Because gt_ensure() is implemented as a macro relying on certain naming conventions, it is manda-
tory that the GtError object passed to the test function is called err.

The unit tests are added to the test suite in the function gtt_unit_tests() in gtt.c and loaded into the
GenomeTools runtime in the function gtr_register_components() in gtr.c. That is, if your unit test
function is gt_class_unit_test(), then you should #include the header class.h (which contains the
function prototype) in gtt.c and add the following line in gtt_unit_tests():

gt_hashmap_add (unit_tests, "exampleyclass", gt_class_unit_test);
The tests registered in this hash table can be executed on the command line with:
$ gt -test

It is also possible to run a single test from the test suite by using the -only option:

$ gt -test -only ’example class’

23

9.2 Testing on the tool level - the test suite

While the unit tests check the correctness of the classes and modules on the code level, the Ruby-based
test suite is used to run tests on the tools themselves. That means that they run tools with example
data or invalid parameters and check whether they behave correctly by looking at error levels, error
messages, and comparing output with reference data.

Test data and reference data are stored in the testdata/ directory of the GenomeTools source tree. Note
that this directory is for smaller test data only. Large files, such as whole chromosome annotations go
into another repository (see[9.2.2)).

9.2.1 Test definitions

Tests are defined in the gt_<toolname>_include.rb files in the testsuite/ directory. They contain test
definitions written in a Ruby-based domain specific language. Here is an example of a simple test:
Name "gt,cds,test,(descriptiongrange)"
Keywords "gt_cds_usedesc"
Test do
run_test "#{$binl}gt cds,-usedesc -seqfile " +
"#{$testdatalgt_cds_test_descrange.fas " +
"#{$testdatalgt_cds_test_descrange.in"
run "diff_ #{$last_stdout} #{$testdata}/gt_cds_test_descrange.out"
end

This test runs the gt cds command with example data and compares its output on stdout with a refer-
ence file.

Every test case must have a name and can have a set of keywords associated with it, allowing for
selective running of a subset of tests from all testsuites. Keywords are separated by spaces. The
actual test code is given in the Test environment. Within this environment, one may use the following
constructs to define test conditions:

® run_test(runstring, options), where

— runstring is the tool commandline to run, and

— options are a hash specifying test constraints. The key :retval specifies the expected
error code for this run (0 is the default). The option :maxtime specifies the maximal time
in seconds that the started program may run before it is killed, resulting in a failed test
(60 is the default). This allows one to detect infinite loops without stopping the testing
progress.

This command runs the command specified in runstring, and causes the test to fail if the re-
turned error code does not equal the expected one.

® grep(file, pattern) which searches for pattern in the file file, failing the test if there is no
match. The pattern can be given as a regular expression.

® run_ruby(rubyscript, options) and run_python(pythonscript, options) can be used to run tests
on external Ruby and Python scripts.

e Any Ruby code, such as custom functions, can be run inside the Test environment. To fail a test
case manually, use the failtest(msg) command, where msg is the error message to fail with.

24

Inside test suite definitions, some useful paths are predefined to be conveniently used in test runs (like
$bin and $testdata in the example above):

e $testdata, the path to the testdata/ directory,

e $gttestdata, the path to the location of the gttestdata repository (see[9.2.2),

e $bin, the path to the GenomeTools bin/ directory,

e $cur, the path to the current test case directory (each test is run in a separate directory),
® $transdir, the path to the gtdata/trans directory,

® $obodir, the path to the gtdata/obo_files directory,

e $gtruby, the path to the gtruby/ directory,

e $gtpython, the path to the gtpython/ directory,

It is also possible to get the standard output and standard error contents of the last command run by
referring to the files specified by $1ast_stdout and $last_stderr.

Furthermore, each test commandline (let’s say the i-th one in the test) creates a set of run_i (contains
the actual command which was run), stdout_i (contains the standard output) an stderr_i (contains the
standard error output) files in the test directory (which is testsuite/stest_testsuite/testn/, where n
is the test number (printed in front of each test name).

9.2.2 The gttestdata repository

Large test or reference data must not be placed into the GenomeTools testdata/ directory because they
would increase the size of the GenomeTools distribution too much. For such data there is a separate
repository, which is available via Git:

$ git clone git://genometools.org/gttestdata.git

The location of the gttestdata repository must be given when running the testsuite (see below). If it
is not given, make sure that test which depend on large test data are disabled (e.g. by placing them in
an ‘if $gttestdata’ clause).

9.2.3 Running the testsuite

A comprehensive GenomeTools test run, containing both the unit tests and the tool tests, can be ini-
tiated by issuing make test in the GenomeTools directory. The following make switches influence the
test runs:

® memcheck=yes enables memory access checking via valgrind,
e testthreads=<n> enables multithreaded testing with <n> threads in parallel to speed up test runs,

e gttestdata=<path> tells the test suite to look for large test data in <path>. This must be where a
copy of the gttestdata repository is installed.

The tool tests can also be run using the testsuite/testsuite.rb script. Use the -keywords <keywords>
parameter to only run these tests tagged with the given keywords. OR and AND operators can be used
to specify the tests in a more detailed way. The -select <n> parameter can be used to run only the one
test with number n, and the -threads <n> will run the testsuite with n threads in parallel.

25

9.3 Header inclusion dependencies

Often function prototypes in the GenomeTools header files use types declared in another header files.
By mistake, it is possible to forget #include’ing the header files where the type is defined in the
header using it. Note that this problem may never surface if the forgotten header is included in every
C source file which includes the header file with the missing include statement. To address this, the
script scripts/src_check_header.rb tries to include each header file given as a command line argument
by itself in a C file and compile it. If dependencies are missing, the check will abort and output the
compiler error message so the problem can be fixed.

9.4 Debug symbols

Compilation with debug symbols is enabled by default. To make sure that line numbers are correct
when using a debugger, e.g. gdb, use the opt=no option in the make call to disable compile-time opti-
mization. The opt option is enabled by default.

9.5 Profiling

To enable the generation of profiling output in the compiled binaries, use the prof=yes option in the
make call. The prot option is disabled by default. Enabling this option makes the GenomeTools binary
create a gmon.out file during each run, which can then be used for analysis using gprofﬂ

9.6 Logging

Use the gt_log_*() functions in core/log_api.h to log debug messages to the screen or files. Output
of debugging information defined using these functions can then be enabled or disabled via the -debug
option of the gt binary. That is, to run tool mytool with debug output enabled, run

$ gt -debug mytool

10 Additional naxe parameters

10.1 Additional targets

Simply running make builds both the gt executable and the GenomeTools shared library. However,
there are also other targets (besides the ones mentioned in the respective sections above) which can
be built using the GenomeTools Makefile:

® docs, which builds API documentation as web pages in wuw and as IZIEX source in doc/,

e manuals, which, in addition to the files created by docs, also creates manuals for some published
tools in GenomeTools (see doc/manuals),

e install, which installs the compiled GenomeTools binaries, libraries and headers into the di-
rectory specified by the prefix=<path> option,

e dist, which creates a tarball with a binary GenomeTools distribution, which will then reside in
the dist/ subdirectory of the GenomeTools root,

2See http://sourceware.org/binutils/docs/gprof/index . html for further information.

26

http://sourceware.org/binutils/docs/gprof/index.html

e srcdist, which creates a tarball with a source GenomeTools distribution, which will then reside
in the working directory,

e spgt, which checks selected files in the core/ and match/ subdirectories using the splint static
checke using the rule set testdata/SKsplintoptions,

e clean, Which removes all files created during the build and test processes, except the 1ib and
bin directories, and

e cleanup, wWhich even removes these.

10.2 Additional options

There are additional make options which are also mentioned in the README file and which influence
how the GenomeTools binaries are built:

o Use amalgamation=yes to compile GenomeTools as an amalgamation. That means, all Genome-
Tools C source files are concatenated into a big source file, which is then compiled. This ap-
proach allows the compiler to perform more extensive optimizations during the compilation
and may result in better performance. It is encouraged to check regularly whether compiling
GenomeTools as an amalgamation still works, as name clashes in static functions can sometimes
occur which compile fine when in separate files, but lead to errors in the amalgamation. This
option is disabled by default.

e Use errorcheck=no to make the compilation process not stop when a warning is encountered.
This option should only be used if necessary (e.g. when building GenomeTools on Windows).
This option is enabled by default.

e Use cairo=no to disable Cairo support in the AnnotationSketch component of GenomeTools.
This is useful on systems on which there is no Cairo library present, and AnnotationSketch is
not needed. This option is enabled by default.

e The option sharedlib=no disables building of a GenomeTools shared library. This option is
enabled by default.

e The option static=yes tries to link all dependencies of GenomeTools statically. This option is
disabled by default.

e Use curses=no to disable ncurses support. Useful when there is no ncurses library on the target
system. This option is enabled by default.

11 Contributing code

For GenomeTools development, we use the distributed versioning system Giﬂ to track changes and
exchange new code. Thus a Git repository is necessary to both:

3http://www.splint.org

“4For a good introduction to the use of the Git software itself, see the Git web site (http://git-scm.com) or read the
following guide: Travis Swicegood. Pragmatic Version Control Using Git. Pragmatic Bookshelf, ISBN 1934356158. We
strongly encourage future GenomeTools developers to familiarize themselves with Git before developing with the intent of
submission!

27

http://www.splint.org
http://git-scm.com

e obtain the latest development version of the GenomeTools, and

e contribute to the GenomeTools by submitting new code to the maintainers.

Be aware that, in this guide, we will not explain Git basic concepts, or how individual Git commands
work in detail. Instead, we will shortly state what strategy is most effective when working in Genome-
Tools development.

11.1 Getting started

To get started with GenomeTools development, we recommend the following:
1. Install the Git version control system.
2. Read the Git documentation.

3. Clone the GenomeTools Git repository with:

$ git clone git://genometools.org/genometools.git

4. Start hacking on your own feature branch:

$ cd genometools
$ git checkout -b my_feature_branch_name

5. Have fun!

11.2 Basic Git configuration

Please set your username and email address correctly. If unconfigured, they are often based on
the hostname of the workstation where a commit is done. This may not be — and almost never is
— correct in typical development environments (i.e. user@uorkstation.zbh.uni-hamburg.de instead of

user@maildomain.org)

Use the git config commands while in your GenomeTools Git repository to set them to a correct
value:

$ git config user.name "Hans_ Mustermann"
$ git config user.email "mustermann@maildomain.org"

11.3 Tips for successful source management

e Develop each major feature or try out bigger changes in a separate branch (the so-called feature
branch) dedicated only to that aspect. That makes it easier to combine or discard branches
later on, without having to meddle with individual commits too much if something goes wrong.
Creating, merging and deleting branches is cheap in Git!

o Always leave your master branch untouched so code pulled from upstream (e.g. the official
GenomeTools repository) does not get merged by accident.

e Branch off new feature branches from the master branch only. That makes it easy to chain
branches later via git rebase in any order.

28

e Try to keep commits atomic. Every commit should either add a single feature or fix a single
bug. That makes two things easier:

1. Locating the exact commit which introduces a bug, e.g. using git bisect. If there are too
many changes in one commit, bugs become more tedious to track down.

2. Reverting single commits if new features introduce bugs.

If you made several incomplete commits and want to reorder or combine them into one after-
wards, use interactive rebasing via git rebase -iP}

e Needless to say, every commit should compile cleanly. Again, bisecting can become very te-
dious if the code has to be fixed at each stop to get it to even compile.

e Try to avoid merges with upstream as much as possible to keep the history linear. Instead of
merging, rebase your feature branches regularly against an updated master:

$ git branch
* mybranch
master
git checkout master
git pull origin
>
git checkout mybranch
git rebase master
>

AN B S N B P

o In the first line of the commit message, give a short description of the change contained in the
commit. Please use active, present tense, e.g. “add feature X” or “allow X to do Y”. Com-
mit messages for commits that touch scripting language bindings should be prefixed with the
language in question, e.g. “gtpython: add bindings for GtFoo class”.

e For bugfixes for bugs also listed in the GenomeTools Lighthouse bug tracking web aplﬂ commit
messages can be used to update the ticket status. See the Lighthouse documentatiorﬂ for details.

11.4 Submission of contributions

This section describes how to get your contributions noticed, reviewed and integrated into the main
GenomeTools codebase.

11.4.1 Source code submission

To get your source code to be considered for inclusion into the GenomeTools official source tree, first
you need a Git repository in a publicly accessible location. That may be a free public account on
github (http://www.github.com, Gitorious (http://gitorious.org), etc., or a directory on a
filesystem accessible by one of the core developers.

Typically the GenomeTools maintainers pull from a branch provided in this location and specified by
you. This is called a pull request. Please specify the exact location to the repository as well as the
branch name. A pull request can be sent to

3Seehttp://book.git-scm.com/4_interactive_rebasing.html for an explanation.
Shttp://genometools.lighthouseapp.com
"http://help.lighthouseapp.com/faqs/ticket-workflow/ticket-keyword-updates

29

http://www.github.com
http://gitorious.org
http://book.git-scm.com/4_interactive_rebasing.html
http://genometools.lighthouseapp.com
http://help.lighthouseapp.com/faqs/ticket-workflow/ticket-keyword-updates

steinbiss@zbh.uni-hamburg.de

or
gremme@gmail.com.

Important: Always rebase your feature branch against the current official GenomeTools master be-
fore requesting a pull (see above). Also, please check whether your code compiles cleanly, even with
the amalgamation=yes and assert=no parameters enabled which may influence compilation success.
Small changes can also be submitted as patches which must be applicable using git apply. You will
then be credited in the commit message. Such patches can be created conveniently — ready to be sent
via mail — via git only using git format-patch Or git diff.

11.4.2 Test data submission

For submissions to the gttestdata repository, the same rules apply as for source code. Please provide a
repository from which to pull a branch which has been rebased against the current gttestdata master
before. Before adding any more test data to the repository, please make sure that the new data is
absolutely necessary. That is, existing large sequence should be reused, for example when testing a
sequence parser or the like.

11.4.3 Licensing

Note that the GenomeTools are free software, i.e. an open-source project. All code distributed with
the GenomeTools is published under the ICS license, which can be viewed athttp://genometools.
org/license.html. Submission of code for inclusion into the GenomeTools implies your permis-
sion to publish your code under this license. We will not accept contributions lacking proper copyright
information at the top of each source file (see[5.3)!

30

http://genometools.org/license.html
http://genometools.org/license.html

	Introduction
	Object-oriented design
	Directory structure
	Public APIs
	Coding style
	Error handling
	Memory management
	Threads
	Testing and Debugging
	Additional make parameters
	Contributing code

